359 research outputs found

    Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Get PDF
    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer

    Match-Only Integral Distribution (MOID) Algorithm for high-density oligonucleotide array analysis

    Get PDF
    BACKGROUND: High-density oligonucleotide arrays have become a valuable tool for high-throughput gene expression profiling. Increasing the array information density and improving the analysis algorithms are two important computational research topics. RESULTS: A new algorithm, Match-Only Integral Distribution (MOID), was developed to analyze high-density oligonucleotide arrays. Using known data from both spiking experiments and no-change experiments performed with Affymetrix GeneChip(®) arrays, MOID and the Affymetrix algorithm implemented in Microarray Suite 4.0 (MAS4) were compared. While MOID gave similar performance to MAS4 in the spiking experiments, better performance was observed in the no-change experiments. MOID also provides a set of alternative statistical analysis tools to MAS4. There are two main features that distinguish MOID from MAS4. First, MOID uses continuous P values for the likelihood of gene presence, while MAS4 resorts to discrete absolute calls. Secondly, MOID uses heuristic confidence intervals for both gene expression levels and fold change values, while MAS4 categorizes the significance of gene expression level changes into discrete fold change calls. CONCLUSIONS: The results show that by using MOID, Affymetrix GeneChip(®) arrays may need as little as ten probes per gene without compromising analysis accuracy

    Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles

    Get PDF
    Nuclear receptors (NRs) are ligand dependent transcriptional factors and play a key role in reproduction, development, and homeostasis of organism. NRs are potential targets for treatment of cancer and other diseases such as inflammatory diseases, and diabetes. In this study, we present a comprehensive library of pocket conformational ensembles of thirteen human nuclear receptors (NRs), and test the ability of these ensembles to recognize their ligands in virtual screening, as well as predict their binding geometry, functional type, and relative binding affinity. 157 known NR modulators and 66 structures were used as a benchmark. Our pocket ensemble library correctly predicted the ligand binding poses in 94% of the cases. The models were also highly selective for the active ligands in virtual screening, with the areas under the ROC curves ranging from 82 to a remarkable 99%. Using the computationally determined receptor-specific binding energy offsets, we showed that the ensembles can be used for predicting selectivity profiles of NR ligands. Our results evaluate and demonstrate the advantages of using receptor ensembles for compound docking, screening, and profiling
    corecore